

Free Neutron-Antineutron Transformation Searches at the European Spallation Source

K. Dunne

For the NNbar/HIBEAM Collaboration

October 2nd, 2020

Baryon Number Violation by $\Delta B = 2$

- BNV appears necessary to understand the dynamical development of the matter-antimatter asymmetry
 - Last unobserved <u>Sakharov condition</u>
- BNV is a hallmark of many BSM theories
 - e.g. <u>Post-sphaleron baryogenesis</u>
 - ΔB = 2 probes complementary yet unique physics compared to proton decay and 0v2β (Super-K, DUNE, etc.)

$n \rightarrow \overline{n}$ Searches at Free Neutron Sources

- High precision way of looking for BNV alone
 - Potentially cleaner signal sensitivity compared to intranuclear searches
 - ∘ $n \rightarrow n'$ ($\Delta B = 1$) dark sector searches offer parallel R&D opportunities
- Unique & underexplored opportunities
 - NNbar/HIBEAM open a new discovery window with free neutron searches

Signal

- Annihilation event in C foil
- More info:

PhysRevD.101.036008 PhysRevD.99.035002

The NNbar/HIBEAM Experiment

- 2 stage experiment HIBEAM(mid2020s) NNBAR(>2030)
- Previous experiment <u>at ILL in 1990s</u> set τ_{nn} ≥ 8.6x10⁷s
- Sensitivity enhanced via 30+ years of advances in
 - Neutronics, optics, moderator design
 - Detector technology
 - Reconstruction techniques
- Expect ≥10³ increase over ILL sensitivity:⟨φt²⟩
 - Rare opportunity for discovery of testable mechanisms of baryogenesis

Factor	Gain v. ILI experimen
Source Intensity	≥2
Neutron Reflector	40
Length (∝t²)	5
Run Time	3
Total Gain	≥1000

The European Spallation Source

- High intensity, Pulsed cold neutron source
- Under construction in Lund, Sweden
- HIBEAM can run off a fundamental physics beamline expected to be approved soon
- Full NNbar experiment on beamline up to 300m

Gain v. ILL **Factor** experiment Source ≥2 Intensity Neutron 40 Reflector Length 5 (∞t^2) **Run Time** 3 **Total Gain** ≥1000

Neutronics

Large Beam Port

- Maximized solid angle
- Access 2 moderators
- Constructed for NNbar specifically
- Completely unique from other n facilities

Moderator

- Upper moderator designed
- Lower moderator design study underway
 - HighNESS (3M€ EU grant)
 - CDR for upgrade of the ESS including NNBAR beamline+experiment.

Reflector

- Large, ellipsoidal focusing supermirror
- Possibilities for novel materials research

R&D Path Towards NNBAR

- Cross-disciplinary effort between nuclear physics, neutronics experts and HEP
- Developments in magnetic shielding, neutron focusing, and moderator design
- Tracking and calorimeter prototypes for in-situ tests
- Beamtime scheduled for nn' experiment before summer at ORNL

K. Dunne || NNbar/HIBEAM @ ESS 7

ESS Test Beam Line for in-situ background measurements

Tracking and calorimeter simulation in GEANT4

Snowmass

- Contributed Paper will describe our program for neutron conversion studies
- Welcome community input and collaboration, see Letter of Interest

2020

New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the European Spallation Source

A. Addazih, K. Andersonaq, S. Ansellbm, K. S. Babuaz, J. Barroww, D. V. Baxter^{d,e,f}, P. M. Bentley^{ac}, Z. Berezhiani^{b,l}, R. Bevilacqua^{ac}, R. Biondi^b, C. Bohmba, G. Brooijmansan, L. J. Broussardaq, B. Devay, C. Crawfordz, A. D. Dolgovai, A. Dunneba, P. Fierlingero, M. R. Fitzsimmonsw, A. Fominn, M. Frost^{aq}, S. Gardiner^c, S. Gardner^z, A. Galindo-Uribarri^{aq}, P. Geltenbort^p, S. Girmohantabb, E. Golubevaah, G. L. Greenew, T. Greenshawaa, V. Gudkovk, R. Hall-Wiltonac, L. Heilbronnx, J. Herrero-Garciabe, G. Ichikawabf, T. M. Itoab E. Iverson^{aq}, T. Johansson^{bg}, L. Jönsson^{ad}, Y-J. Jwa^{an}, Y. Kamyshkov^w. K. Kanakiac, E. Kearnsg, B. Kerbikoval,aj,ak, M. Kitaguchiap, T. Kittelmannac, E. Klinkby^{ae}, A. Kobakhidze^{bl}, L. W. Koerner^s, B. Kopeliovich^{bi}, A. Kozela^y, V. Kudryavtsev^{ax}, A. Kupsc^{bg}, Y. Lee^{ac}, M. Lindroos^{ac}, J. Makkinje^{an}, J. I. Marquezac, B. Meiroseba,ad, T. M. Millerac, D. Milsteadba,*, R. N. Mohapatra^j, T. Morishima^{ap}, G. Muhrer^{ac}, H. P. Mumm^m, K. Nagamoto^{ap}, F. Nesti¹, V. V. Nesvizhevsky^p, T. Nilsson^r, A. Oskarsson^{ad}, E. Paryev^{ah}. R. W. Pattie, Jr. Jr. S. Penttilä^{aq}, Y. N. Pokotilovski^{am}, I. Potashnikova^{bi}, C. Redding^x, J-M. Richard^{bj}, D. Ries^{af}, E. Rinaldi^{au,bc}, N. Rossi^b, A. Ruggles^x, B. Rybolt^u, V. Santoro^{ac}, U. Sarkar^v, A. Saunders^{ab}, G. Senjanovic^{bd,bn} A. P. Serebrovⁿ, H. M. Shimizu^{ap}, R. Shrock^{bb}, S. Silverstein^{ba}, D. Silvermyr^{ad}. W. M. Snow^{d,e,f}, A. Takibayev^{ac}, I. Tkachev^{ah}, L. Townsend^x, A. Tureanu^q L. Varrianoⁱ, A. Vainshtein^{ag,av}, J. de Vries^{a,bh}, R. Woracek^{ac}, Y. Yamagata^{bk}, A. R. Youngas, L. Zaniniac, Z. Zhangar, O. Zimmerp

^aAmherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts, Amherst, MA, USA

^bINFN, Laboratori Nazionali del Gran Sasso, 67010 Assergi AQ, Italy ^cFermi National Accelerator Laboratory, Batavia, IL 60510-5011, USA

Department of Physics, Indiana University, 727 E. Third St., Bloomington, IN, USA, 47405
 Indiana University Center for Exploration of Energy & Matter, Bloomington, IN 47408, USA
 Indiana University Quantum Science and Engineering Center, Bloomington, IN 47408, USA
 Department of Physics, Boston University, Boston, MA 02215, USA

h Center for Theoretical Physics, College of Physics Science and Technology Sichuan University

- Our Collaboration
 - 26 institutions across 8 countries
 - Co-spokespersons:
 - G. Brooijmans (Columbia)
 - D. Milstead (Stockholm)
 - Technical Coordinator
 - V. Santoro (ESS)
 - Lead Scientist
 - Y. Kamyshkov (UTK)
 - Collaboration with ORNL on neutron conversion program
- See <u>our recent white paper</u>